It is commonly known that Pv parasites tend to have larger size of chromatin than that of Pf parasites. However, it has never been quantified and hence, in this study, the chromatin size was quantified and used as the criteria to classify the species of malaria parasites. By acquiring the extended depth of field image, we measured the size of chromatin from 4,000 parasites and constructed the classification model. As shown in Figure 5, the chromatin size of both Pf and Pv ranges from 30.1 to 688 nm. In particular, the size of Pf's chromatin mainly varies in the range of 30.1 to 258 nm, while Pv's chromatin size has wider range of 30.1 to 688 nm. In addition, it was found that more than 20% of the Pv samples have the size of chromatin > 258 nm.
species part 1 full movie free download
This prototype is designed to fully function automatically by using a motorized stage unit that controls the movements of objective lens for fine focus tuning and of microscope stage for facilitating acquisition of images in different regions. An operator only places a slide with Giemsa-stained thick blood films on the microscope stage and performs initial focusing. By starting the analysis program, the detection and classification processes will proceed automatically and report the species classification results on the screen. This device is user-friendly and useful for deployment in endemic areas to help health personnel in examination of malaria-infected blood samples for quick and appropriate treatment of malaria patients.
The goal of image acquisition is to acquire sufficiently decent quality images with crucial information for further manipulation such as interpretation of the image, i.e., malaria shape recognition. Especially for the biomedical images, the lack of crucial information may lead to misinterpretation. In order to get quality images, the image acquisition unit is designed to automatically controlling the movement of microscope stage in 3-directional planes. The x-axis and y-axis horizontal adjustments are used for repositioning a slide while the z-axis vertical adjustment is used for focusing. The vertical adjustment system operates the fine-focus knob of the microscope to vertically move the lens while the digital camera that is installed at the top of microscope capturing the 1000 magnified images from various depths of field. All information from all depths of field is merged to get all in-focus parts. Information of only one depth of field is not enough for estimation of size and shape of a parasite and may directly affect the performance of species classification. The in-focus image is sent to image analysis module installed on a personal computer. The image analysis module detects and classifies malaria parasites on each field of the thick blood film. The analysis process is finished, when the pre-set number of fields is reached.
This article has been published as part of BMC Bioinformatics Volume 13 Supplement 17, 2012: Eleventh International Conference on Bioinformatics (InCoB2012): Bioinformatics. The full contents of the supplement are available online at
Sex chromosomes have been notoriously difficult to assemble, owing to their greater divergence relative to autosomes and high repeat content31. We successfully assembled both sex chromosomes (Z, W) for all three avian species, the first W chromosome (to our knowledge) for vocal learning birds (Extended Data Figs. 7, 9b), the X and/or Y chromosome in placental mammals (Canada lynx and two bat species), the X chromosome in the thorny skate, and for the first time, to our knowledge, all ten sex chromosomes (5X and 5Y) in the platypus26 (Extended Data Fig. 9c). The completeness and continuity of the zebra finch Z and W chromosomes were further improved by the trio-based assembly (Extended Data Fig. 9b). However, the sex chromosome assemblies were still more fragmented than the autosomes, probably owing to their lower sequencing depth and high repeat content.
An example of a whole-gene heterotype false duplication in the RefSeq annotation of the previous zebra finch reference19 is the BUSCO gene SPC2536, for which each haplotype was correctly placed in the VGP primary and alternate assemblies (Fig. 3e). The GABRG2 receptor, which shows specialized expression in vocal learning circuits37, had a partial tandem duplication of four of its ten exons, resulting in annotated partial false tandem gene duplications (GABRG2 and GABRG2-like; Fig. 3f). The vitellogenin-2 (VTG2) gene, a component of egg yolk in all egg-laying species38, was distributed across 14 contigs in 3 different scaffolds in the previous platypus assembly (Fig. 3g). Two of these scaffolds received two corresponding VTG2-like gene annotations, and the third was included as false duplicated intron in CAPN-13 (red), together causing false amino acid sequences in five exons (blue). The BUSCO YIPF6 gene, which is associated with inflammatory bowel disease39, was split between two different scaffolds and is thus presumed to be a gene loss in the earlier climbing perch assembly40 (Fig. 3h). Each of these genes is now present on long VGP contigs, within validated blocks, with no gaps and no false gene gains or losses (Supplementary Table 21).
The VGP genome assembly pipeline produces high quality assemblies, yet no automated method to date is free from the production of errors, especially during the scaffolding stages. To minimize the impact of the remaining algorithmic shortcomings, we subjected all assemblies to rigorous manual curation. All data generated for a species in this study and other publicly available data (for example, genetic maps, gene sets and genome assemblies of the same or closely related species) were collated, aligned to the primary assembly and analysed in gEVAL95 ( -geval.sanger.ac.uk/index.html), visualizing discordances in a feature browser and issue lists. In parallel, Hi-C data were mapped to the primary assembly and visualized using Juicebox96 and/or HiGlass97. With these data, genome curators identified mis-joins, missed joins and other anomalies, and corrected the primary assembly accordingly. No change was made without unambiguous evidence from available data types; for example, a Hi-C suggested join would not be made unless supported by BioNano maps, long-read data, or gene alignments. When sequencing the heterogametic sex, we identified sex chromosomes based on half coverage, homology alignments to sex chromosomes in other species, and the presence of sex chromosome-specific genes.
a, Alignment scatterplot, generated with MUMmer NUCmer107, visualized with dot108, of maternal and paternal chromosomes from the female zebra finch trio-based assembly. Blue, same orientation; red, inversion; orange, repeats between haplotypes. The paternal Z chromosome is highly divergent from the maternal W, and thus mostly unaligned. b, Alignment scatterplot of assembled Z and W chromosomes across the three bird species, approximated with MashMap286. Segments of 300 kb (green), 500 kb (blue), and 1 Mb (purple) are shaded darker with higher sequence identity, with a minimum of 85%. The smaller size and higher repeat content of the W chromosome are clearly visible. c, X and Y chromosome segments of the mammals (platypus, Canada lynx, pale spear-nosed bat, and greater horseshoe bat) showing a higher density of repeats within the mammalian X chromosome than the avian Z chromosome. d, VGP kākāpō mitochondrial genome assembly reveals previously missing repetitive sequences (adding 2,232 bp) in the origin of replication region, containing an 83-bp repeat unit. e, VGP climbing perch mitochondrial genome assembly showing a duplication of trnL2 and partial duplication of Nad1, which were absent from the prior reference. Orange arrows and red lines, tRNA genes and their alignments; dark grey arrows and grey shading, all other genes and their alignments; black, non-coding regions; green line, conventional starting point of the circular sequence.
(ii) in the case of an animal: for species included in Appendices I and II, any readily recognizable part or derivative thereof; and for species included in Appendix III, any readily recognizable part or derivative thereof specified in Appendix III in relation to the species; and
(iii) in the case of a plant: for species included in Appendix I, any readily recognizable part or derivative thereof; and for species included in Appendices II and III, any readily recognizable part or derivative thereof specified in Appendices II and III in relation to the species;
5. Where a Management Authority of the State of export is satisfied that any specimen of an animal species was bred in captivity or any specimen of a plant species was artificially propagated, or is a part of such an animal or plant or was derived therefrom, a certificate by that Management Authority to that effect shall be accepted in lieu of any of the permits or certificates required under the provisions of Article III, IV or V.
4. A State party to the present Convention, which is also a party to any other treaty, convention or international agreement which is in force at the time of the coming into force of the present Convention and under the provisions of which protection is afforded to marine species included in Appendix II, shall be relieved of the obligations imposed on it under the provisions of the present Convention with respect to trade in specimens of species included in Appendix II that are taken by ships registered in that State and in accordance with the provisions of such other treaty, convention or international agreement.
2. Each list submitted under the provisions of paragraph 1 of this Article shall be communicated to the Parties by the Secretariat as soon as possible after receiving it. The list shall take effect as part of Appendix III 90 days after the date of such communication. At any time after the communication of such list, any Party may by notification in writing to the Depositary Government enter a reservation with respect to any species or any parts or derivatives, and until such reservation is withdrawn, the State shall be treated as a State not a Party to the present Convention with respect to trade in the species or part or derivative concerned. 2ff7e9595c
Kommentarer